博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
双线性插值
阅读量:5333 次
发布时间:2019-06-15

本文共 1453 字,大约阅读时间需要 4 分钟。

双线性插值

      假设源图像大小为mxn,目标图像为axb。那么两幅图像的边长比分别为:m/a和n/b。注意,通常这个比例不是整数,编程存储的时候要用浮点型。目标图像的第(i,j)个像素点(i行j列)可以通过边长比对应回源图像。其对应坐标为(i*m/a,j*n/b)。显然,这个对应坐标一般来说不是整数,而非整数的坐标是无法在图像这种离散数据上使用的。双线性插值通过寻找距离这个对应坐标最近的四个像素点,来计算该点的值(灰度值或者RGB值)。

  若图像为灰度图像,那么(i,j)点的灰度值的数学计算模型是:

f(x,y)=b1+b2x+b3y+b4xy

其中b1,b2,b3,b4是相关的系数。关于其的计算过程如下如下:

      如图,已知Q12,Q22,Q11,Q21,但是要插值的点为P点,这就要用双线性插值了,首先在x轴方向上,对R1和R2两个点进行插值,这个很简单,然后根据R1和R2对P点进行插值,这就是所谓的双线性插值。

附:维基百科--双线性插值:

      双线性插值,又称为双线性内插。在上,双线性插值是有两个变量的函数的扩展,其核心思想是在两个方向分别进行一次线性插值。

假如我们想得到未知函数 f 在点 P=\left( x, y\right) 的值,假设我们已知函数 fQ_{11} = \left( x_1, y_1 \right), Q_{12} = \left( x_1, y_2 \right), Q_{21} = \left( x_2, y_1 \right), 及 Q_{22} = \left( x_2, y_2 \right) 四个点的值。

首先在 x 方向进行线性插值,得到

f(R_1) \approx \frac{x_2-x}{x_2-x_1} f(Q_{11}) + \frac{x-x_1}{x_2-x_1} f(Q_{21}) \quad\mbox{Where}\quad R_1 = (x,y_1),
f(R_2) \approx \frac{x_2-x}{x_2-x_1} f(Q_{12}) + \frac{x-x_1}{x_2-x_1} f(Q_{22}) \quad\mbox{Where}\quad R_2 = (x,y_2).

然后在 y 方向进行线性插值,得到

f(P) \approx \frac{y_2-y}{y_2-y_1} f(R_1) + \frac{y-y_1}{y_2-y_1} f(R_2).

这样就得到所要的结果 f \left( x, y \right),

f(x,y) \approx \frac{f(Q_{11})}{(x_2-x_1)(y_2-y_1)} (x_2-x)(y_2-y) + \frac{f(Q_{21})}{(x_2-x_1)(y_2-y_1)} (x-x_1)(y_2-y)
+ \frac{f(Q_{12})}{(x_2-x_1)(y_2-y_1)} (x_2-x)(y-y_1) + \frac{f(Q_{22})}{(x_2-x_1)(y_2-y_1)} (x-x_1)(y-y_1).

如果选择一个坐标系统使得 f 的四个已知点坐标分别为 (0, 0)、(0, 1)、(1, 0) 和 (1, 1),那么插值公式就可以化简为

f(x,y) \approx f(0,0) \, (1-x)(1-y) + f(1,0) \, x(1-y) + f(0,1) \, (1-x)y + f(1,1) xy.

或者用运算表示为

f(x,y) \approx \begin{bmatrix}1-x & x \end{bmatrix} \begin{bmatrix}f(0,0) & f(0,1) \\f(1,0) & f(1,1) \end{bmatrix} \begin{bmatrix}1-y \\y \end{bmatrix}

这种插值方法的结果通常不是线性的,线性插值的结果与插值的顺序无关。首先进行 y 方向的插值,然后进行 x 方向的插值,所得到的结果是一样的。

opencv和Matlab中的双线性插值

   这部分的前提是,你已经明白什么是双线性插值并且在给定源图像和目标图像尺寸的情况下,可以用笔计算出目标图像某个像素点的值。当然,最好的情况是你已经用某种语言实现了网上一大堆博客上原创或转载的双线性插值算法,然后发现计算出来的结果和matlab、openCV对应的resize()函数得到的结果完全不一样。

那这个究竟是怎么回事呢?

其实答案很简单,就是坐标系的选择问题,或者说源图像和目标图像之间的对应问题。

按照网上一些博客上写的,源图像和目标图像的原点(0,0)均选择左上角,然后根据插值公式计算目标图像每点像素,假设你需要将一幅5x5的图像缩小成3x3,那么源图像和目标图像各个像素之间的对应关系如下:

只画了一行,用做示意,从图中可以很明显的看到,如果选择右上角为原点(0,0),那么最右边和最下边的像素实际上并没有参与计算,而且目标图像的每个像素点计算出的灰度值也相对于源图像偏左偏上。

那么,让坐标加1或者选择右下角为原点怎么样呢?很不幸,还是一样的效果,不过这次得到的图像将偏右偏下。

最好的方法就是,两个图像的几何中心重合,并且目标图像的每个像素之间都是等间隔的,并且都和两边有一定的边距,这也是matlab和openCV的做法。如下图:

如果你不懂我上面说的什么,没关系,只要在计算对应坐标的时候改为以下公式即可,

int x=(i+0.5)*m/a-0.5

int y=(j+0.5)*n/b-0.5

代替

int x=i*m/a

int y=j*n/b

利用上述公式,将得到正确的双线性插值结果

转载于:https://www.cnblogs.com/yifdu25/p/8975434.html

你可能感兴趣的文章
win8.1安装Python提示缺失api-ms-win-crt-runtime-l1-1-0.dll问题
查看>>
图片点击轮播(三)-----2017-04-05
查看>>
判断两个字符串是否相等【JAVA】
查看>>
直播技术细节3
查看>>
《分布式服务架构:原理、设计于实战》总结
查看>>
java中new一个对象和对象=null有什么区别
查看>>
字母和数字键的键码值(keyCode)
查看>>
协议和代理
查看>>
IE8调用window.open导出EXCEL文件题目
查看>>
sql server 2008 不允许保存更改,您所做的更改要求删除并重新创建以下表 的解决办法(转)...
查看>>
[转]iOS学习笔记(2)--Xcode6.1创建仅xib文件无storyboard的hello world应用
查看>>
Spring mvc初学
查看>>
python标准库学习7
查看>>
有意思的代码片段
查看>>
C8051开发环境
查看>>
VTKMY 3.3 VS 2010 Configuration 配置
查看>>
255. Verify Preorder Sequence in Binary Search Tree
查看>>
01_1_准备ibatis环境
查看>>
windows中修改catalina.sh上传到linux执行报错This file is needed to run this program解决
查看>>
[fowarding]Ubuntu jsp平台使用JDBC来连接MySQL数据库
查看>>